2017数学高考高效课时作业
来源:管理学 发布时间:2012-07-12 点击:
2017数学高考高效课时作业篇一
【高考调研】2017届高考理科数学一轮课时作业78套(73—78)
【高考调研】2017届高考理科数学一轮课时作业(73—78)
第十一章 选修部分
课时作业(73)
1.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为(
)
15
A. 415C. 2
答案 C
B.7 24D. 5
DEAE
解析 由已知条件∠AED=∠B,∠A为公共角,所以△ADE∽△ACB=BCAB
6×1015
而BC=.选C.
82
2.如图,E是▱ABCD的边AB延长线上的一点,且DC∶BE=3∶2,则AD∶BF=(
)
A.5∶3 C.3∶2 答案 B
解析 由题可得△BEF∽△CDF,∴
B.5∶2 D.2∶1
DCDF3ADDEDF5=,∴==+1=. BEEF2BFEFEF2
3.如图,DE∥BC,DF∥AC,AD=4 cm,BD=8 cm,DE=5 cm,则线段BF的长为(
)
A.5 cm C.9 cm 答案 D
解析 ∵DE∥BC,DF∥AC, ∴四边形DECF是平行四边形.
BFBD
∴FC=DE=5 cm.∵DF∥AC,∴.
FCDA
BF8
即=BF=10 cm. 54
4.如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E,则(
)
B.8 cm D.10 cm
A.CE·CB=AD·DB B.CE·CB=AD·AB C.AD·AB=CD2 D.CE·EB=CD2 答案 A
解析 在直角三角形ABC中,根据直角三角形射影定理可得CD2=AD·DB,再根据切割线
2
定理可得CD=CE·CB.所以CE·CB=AD·DB.
5.Rt△ABC中,∠CAB=90°,AD⊥BC于D,AB∶AC=3∶2,则CD∶BD=( ) A.3∶2 B.2∶3 C.9∶4 D.4∶9 答案 D
解析 由△ABD∽△CBA,得AB2=BD·BC. 由△ADC∽△BAC,得AC2=DC·BC.
2
CD·BCAC4∴CD∶BD=4∶9. BD·BCAB9
6.如图所示,在▱ABCD中,BC=24,E,F为BD的三等分点,则BM-DN=(
)
A.6 C.2 答案 A
解析 ∵E,F为BD的三等分点,四边形ABCD为平行四边形,∴M为BC的中点.连CF交AD于P,则P为AD的中点,由△BCF∽△DPF及M为BC中点知,N为DP的中点,∴BM-DN=12-6=6,故选A.
7.如图所示,在矩形ABCD中,AB=12,AD=10,将此矩形折叠使点B落在AD边的中点E处,则折痕FG的长为(
)
B.3 D.4
A.13
65C. 6
答案 C
解析 过A作AH∥FG交DG于H, 则四边形AFGH为平行四边形. ∴AH=FG.
∵折叠后B点与E点重合,折痕为FG,∴B与E关于FG对称. ∴BE⊥FG,∴BE⊥AH.
∴∠ABE=∠DAH,∴Rt△ABE∽Rt△DAH. BEAH∴. ABAD
1
∵AB=12,AD=10,AE==5,∴BE=12+5=13.
2
BE·AD65
∴FG=AH==AB6
8.如图,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,则AB的长为________.
63
B. 521D. 2
9答案
2
ADDE2DFCE19解析 =.∵BC=3,DE=2,DF=1,解得AB=.
ABBC3ADAC32
9.如图,在Rt△ABC中,CD为斜边AB上的高,CD=6,且AD∶BD=3∶2,则斜边AB上的中线CE的长为________.
56
2
解析 ∵CD2=BD·AD,设BD=2k,则AD=3k,
2
∴36=6k,∴k=6,∴AB=5k=6.
16
∴CE=AB=.
22
10. (2016·广东梅州联考)如图,在△ABC中,
BC=4,∠BAC=120°,AD⊥BC,过B作CA的垂线,交CA的延长线于E,交DA的延长线于F,则AF=________. 答案
43
3
解析 设AE=x,
∵∠BAC=120°,∴∠EAB=60°. AEx1又 BE3x3
在Rt△AEF与Rt△BEC中,
∠F=90°-∠EAF=90°-∠DAC=∠C,
AFAE
∴△AEF∽△BEC,∴=
BCBE
14
3
∴AF=4×=33
11.(2015·江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.
求证:△ABD∽△AEB. 答案
答案 略
证明 因为AB=AC,所以∠ABD=∠C.
又因为∠C=∠E,所以∠ABD=∠E, 又∠BAE为公共角,可知△ABD∽△AEB.
12.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,DF⊥AC于F,DE⊥AB于E,求证:AD3=BC·BE·
CF.
答案 略
证明 在Rt△ABC中,因为AD⊥BC, 所以AD2=BD·DC,且AD·BC=AB·AC. 在Rt△ABD和Rt△ADC中, 因为DE⊥AB,DF⊥AC, 由射影定理,得BD2=BE·BA,DC2=CF·AC.
22
所以BD·DC=BE·BA·CF·AC
4
=BE·CF·AD·BC=AD. 所以AD3=BC·BE·CF. 13. (2016·甘肃河西三校第一次联考)如图,△ABC的角平分线AD的延长线交它的外接圆于点
E.
(1)证明:△ABE∽△ADC;
1
(2)若△ABC的面积S·AE,求∠BAC的大小.
2
答案 (1)略 (2)90°
解析 (1)证明:由已知条件,可得∠BAE=∠CAD.
因为∠AEB与∠ACB是同弧所对的圆周角,所以∠AEB=∠ACD. 故△ABE∽△ADC.
ABAD
(2)因为△ABE∽△ADC,所以=AB·AC=AD·AE.
AEAC
11
又S=AB·ACsin∠BAC,且S=AD·AE,
22故AB·ACsin∠BAC=AD·AE.
则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°. 14. (2016·沧州七校联考)如图,点A为圆外一点,过点A作圆的两条切线,切点分别为B,C,ADE是圆的割线,连接CD,BD,BE,
CE.
(1)求证:BE·CD=BD·CE;
(2)延长CD,交AB于点F,若CE∥AB,证明:F为线段AB的中点. 答案 (1)略 (2)略
证明 (1)如图,由题意可得
∠ACD=∠AEC,∠CAD=∠EAC,
CDAC
∴△ADC∽△ACE,∴=
CEAEBDAB
同理△ADB∽△ABE,=又∵AB=AC,
BEAE
CDBD
∴,∴BE·CD=BD·CE. CEBE
(2)如图,由切割线定理,得FB2=FD·FC. ∵CE∥AB,∴∠FAD=∠AEC.
又∵AC切圆于C,∴∠ACD=∠AEC,∴∠FAD=∠FCA,又∠F=∠F,
AFFD
∴△AFD∽△CFA,∴AF2=FD·FC.
CFAF
∵FB2=AF2,即FB=FA,∴F为线段AB的中点.
1.如图, 在△ABC中,AE=ED=DC,FE∥MD∥BC,FD的延长线交BC的延长线于点N,且EF=1,则BN=(
)
A.2 C.4 答案 C
解析 ∵FE∥MD∥BC,AE=ED=DC, EFAE1EFED1∴. BCAC3CNDC1
EFEF1
∴EF=CN,∴=.
BNBC+CN4
∴BN=4EF=4.
(或由△FDE≌△NDC⇒EF=CN).
2.如图,在直角梯形ABCD中,上底AD3,下底BC=3,与两底垂直的腰AB=6,在AB上选取一点P,使△PAD和△PBC相似,
B.3 D.6
则这样的点P( ) A.有1个 C.有3个 答案 B
解析 设AP=x.
ADAP
(1)若△ADP∽△BPC,则
BPBC
B.有2个 D.不存在
2017数学高考高效课时作业篇二
【高考调研】2017届高考理科数学一轮课时作业78套(58—68)
【高考调研】2017届高考理科数学一轮课时作业(58—68)
第十章 计数原理和概率
课时作业(58)
1.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )
A.21种 B.315种
C.143种 D.153种
答案 C
解析 可分三类:
一类:语文、数学各1本,共有9³7=63种;
二类:语文、英语各1本,共有9³5=45种;
三类:数学、英语各1本,共有7³5=35种;
∴共有63+45+35=143种不同选法.
2.(2016·武汉市二中月考)从1到10的正整数中,任意抽取两个相加所得和为奇数的不同情形的种数是( )
A.10 B.15
C.20 D.25
答案 D
解析 当且仅当偶数加上奇数后和为奇数,从而不同情形有5³5=25(种).
3.5名应届毕业生报考3所高校,每人报且仅报1所院校,则不同的报名方法的种数是( ) 53A.3 B.5
C.A32 D.C53
答案 A
4.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有(
)
A.24种
C.36种
答案 D
解析 共有4³3³2³2=48(种),故选D.
5.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为( )
A.42 B.30
C.20 D.12
答案 A
解析 将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,插入第2个时有7个空,共7种插法,所以共6³7=42(种).
6.高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )
A.16种 B.18种
C.37种 D.48种
答案 C B.30种 D.48种
解析 自由选择去四个工厂有43种方法,甲工厂不去,自由选择去乙、丙、丁三个工厂有33种方法,故不同的分配方案有43-33=37种.
7.某大楼安装了5个彩灯,它们闪亮的顺序不固定,每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是( )
A.1 205秒 B.1 200秒
C.1 195秒 D.1 190秒
答案 C
解析 要实现所有不同的闪烁且需要的时间最少,只要所有闪烁连续地、不重复地依次闪烁一遍.而所有的闪烁共有A55=120个;因为在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,即每个闪烁的时长为5秒,而相邻两个闪烁的时间间隔均为5秒,所以要实现所有不同的闪烁,需要的时间至少是120³(5+5)-5=1 195秒.
8.(2016·邯郸一中模拟)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )
A.18个 B.15个
C.12个 D.9个
答案 B
解析 依题意知,这四个位数的百位数、十位数、个位数之和为4.由4,0,0组成有3个数,分别为400,040,004;由3,1,0组成有6个数,分别为310,301,130,103,013,031;由2,2,0组成有3个数,分别为220,202,022;由2,1,1组成有3个数,分别为211,121,112,共3+6+3+3=15个.
9.(2016·江南十校)已知I={1,2,3},A,B是集合I的两个非空子集,且A中所有数的和大于B中所有数的和,则集合A,B共有( )
A.12对 B.15对
C.18对 D.20对
答案 D
解析 依题意,当A,B均有一个元素时,有3对;当B有一个元素,A有两个元素时,有8对;当B有一个元素,A有三个元素时,有3对;当B有两个元素,A有三个元素时,有3对;当A,B均有两个元素时,有3对;共20对,选择D.
10.由1到200的自然数中,各数位上都不含8的有________个.
答案 162
解析 一位数8个,两位数8³9=72个.
有9³9
另外
1个(即200),
共有8+72+81+1=162个.{2017数学高考高效课时作业}.
11.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中任取两个不同的数作为A,B的值,则可表示________条不同的直线.
答案 22
解析 分成三类:A=0,B≠0;A≠0,B=0和A≠0,B≠0,前两类各表示1条直线;第三类先取A有5种取法,再取B有4种取法,故5³4=20种.
所以可以表示22条不同的直线.
12.如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共________种.(用数字作答)
答案 480
按顺序依次涂A,B,C,D利用分步乘法计数思路 →色,明确各区域→ 四块区域原理求涂法种类的涂色方法数
解析 从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D有4种涂色方法.由分步乘法计数原理可知,共有6³5³4³4=480(种)涂色方法.
13.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.
(1)若取出的两个球颜色不同,有多少种取法?
(2)若取出的两个球颜色相同,有多少种取法?
答案 (1)11 (2)4
解析 (1)若两个球颜色不同,则应在A,B袋中各取一个或A,C袋中各取一个,或B,C袋中各取一个.
∴应有1³2+1³3+2³3=11种.
(2)若两个球颜色相同,则应在B或C袋中取出2个.
∴应有1+3=4种.
14.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?
答案 20种
解析 由题意得有1人既会英语又会日语,6人只会英语,2人只会日语.
第一类:从只会英语的6人中选1人说英语,共有6种方法,则说日语的有2+1=3(种),此时共有6³3=18(种);第二类:不从只会英语的6人中选1人说英语,则只有1种方法,则选会日语的有2种,此时共有1³2=2(种);所以根据分类加法计数原理知共有18+2=20(种)选法.
15.三边长均为整数,且最大边长为11的三角形的个数是多少?
答案 36个
解析 设较小的两边长为x、y且x≤y,
x≤y≤11,则x+y>11,
x、y∈N*.
当x=1时,y=11;
当x=2时,y=10,11;
当x=3时,y=9,10,11;
当x=4时,y=8,9,10,11;
当x=5时,y=7,8,9,10,11;
当x=6时,y=6,7,8,9,10,11;
当x=7时,y=7,8,9,10,11;
„„
当x=11时,y=11.
所以不同三角形的个数为
1+2+3+4+5+6+5+
4+3+2+1=36个.
1.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个
小组由1名教师和2名学生组成,不同的安排方案共有( )
A.12种 B.10种
C.9种 D.8种{2017数学高考高效课时作业}.
答案 A
解析 2名教师各在1个小组,给其中1名教师选2名学生,有C42种选法,另2名学生分配给另1名教师,然后将2个小组安排到甲、乙两地,有A22种方案,故不同的安排方案共有C42A22=12种,故选A.
2.有A,B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,若从三名工人中选2名分别去操作以上车床,则不同的选派方法有( )
A.6种 B.5种
C.4种 D.3种
答案 C
解析 若选甲、乙2人,则包括甲操作A车床,乙操作B车床或甲操作B车床,乙操作A车床,共有2种选派方法;若选甲、丙2人,则只有甲操作B车床,丙操作A车床这1种选派方法;若选乙、丙2人,则只有乙操作B车床,丙操作A车床这1种选派方法. ∴共有2+1+1=4种不同的选派方法.
3.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有( )
A.6种 B.12种
C.18种 D.20种
答案 D
解析 分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C32=6种情形;恰好打5局(一个前4局中赢2局,输2局,第5局输),共有2C42=12种情形.所有可能出现的情形共有2+6+12=20种.
4.若m,n均非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.
答案 300
解析 第1步,1=1+0,1=0+1,共2种组合方式;
第2步,9=0+9,9=1+8,9=2+7,9=3+6,„,9=9+0,共10种组合方式; 第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;
第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.
根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为2³10³5³3=300.
5.在一宝宝“抓周”的仪式上,他面前摆着2件学习用品,2件生活用品,1件娱乐用品,若他可抓其中的两件物品,则他抓的结果有________种.
答案 10
解析 设学习用品为a1,a2;生活用品为b1,b2,娱乐用品为c,则结果有:(a1,a2),(a1,b1),(a1,b2),(a1,c),(a2,b1),(a2,b2),(a2,c),(b1,b2),(b1,c),(b2,c),共10种.
6.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是________.
答案 6
7.(2016·湖南十二校联考)用红、黄、蓝三种颜色去涂图中标号为1,2,„,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.
答案 108
解析 把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4,7,8,当5,7
同色时,4,8各有2种涂法,共4种涂法,当5,7异色时,7有2种涂法,4、8均只有1种涂法,故第二部分共4+2=6种涂法,第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3³6³6=108种涂法.
8.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.
解析 方法一:可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两
顶点的染色数,用分步乘法原理即可得出结论.由题设,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5³4³3=60种染色方法.
当S,A,B染好时,不妨设其颜色分别为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染色;若C染5,则D可染3或4,有2种染法.可见,当S,A,B已染好时,C,D还有7种染法,故不同的染色方法有60³7=420种.
方法二:以S,A,B,C,D顺序分步染色.
第一步,S点染色,有5种方法;
第二步,A点染色,与S在同一条棱上,有4种方法;
第三步,B点染色,与S,A分别在同一条棱上,有3种方法;
第四步,C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5³4³3(1³3+2³2)=420种.
方法三:按所用颜色种数分类.
第一类,5种颜色全用,共有A55种不同的方法;
第二类,只有4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2³A54种不同的方法;
第三类,只有3种颜色,则A与C,B与D必定同色,共有A53种不同的方法. 由分类加法计数原理,得不同的染色方法总数为A55+2³A54+A53=420种.
课时作业(59)
1.若A2n3=10An3,则n=( )
A.1 B.8
C.9 D.10
答案 B
解析 原式等价于2n(2n-1)(2n-2)=10n(n-1)(n-2),整理得n=8.
2.(2016·沈阳调研)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )
A.144 B.120
C.72 ` D.24
答案 D
解析 利用排列和排列数的概念直接求解.
剩余的3个座位共有4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A43=4³3³2=24.
3.若从1,2,3,„,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )
2017数学高考高效课时作业篇三
【高考调研】2017届高考理科数学一轮课时作业78套(1—3)
【高考调研】2017届高考理科数学一轮课时作业(1—3)
第一章 集合与简易逻辑
课时作业(1)
1.下列各组集合中表示同一集合的是( )
A.M={(3,2)},N={(2,3)}
B.M={2,3},N={3,2}
C.M={(x,y)|x+y=1},N={y|x+y=1}
D.M={2,3},N={(2,3)}
答案 B
2.若P={x|x<1},Q={x|x>-1|,则( )
A.P⊆Q B.Q⊆P
C.∁R P⊆Q D.Q⊆∁R P
答案 C
解析 由题意,得∁R P={x|x≥1},画数轴可知,选项A,B,D错,故选C.
3.(2015·新课标全国Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )
A.5 B.4
C.3 D.2
答案 D
解析 由已知得A={2,5,8,11,14,17,„},又B={6,8,10,12,14},所以A∩B={8,14}.故选D.
4.(2015·陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=( )
A.[0,1] B.(0,1]
C.[0,1) D.(-∞,1]
答案 A
解析 由已知得M={0,1},N={x|0<x≤1},则M∪N=[0,1].
5.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则( )
A.P⊆Q B.Q⊆P
C.∁R P⊆Q D.Q⊆∁RP
答案 C
解析 依题意得集合P={y|y≤1},Q={y|y>0},
∴∁R P={y|y>1},∴∁R P⊆Q,选C.
6.已知集合A={x||x|≤2,x∈R},B=x≤4,x∈Z},则A∩B=( )
A.(0,2) B.[0,2]
C.{0,2} D.{0,1,2}
答案 D
解析 由已知得A={x|-2≤x≤2},B={0,1,„,16},所以A∩B={0,1,2}.
7.(2016·湖北宜昌一中模拟)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )
A.{0,1,2} B.{-1,0,1,2}
C.{-1,0,2,3} D.{0,1,2,3}
答案 A
解析 不等式(x-1)2<4等价于-2<x-1<2,得-1<x<3,故集合M={x|-1<x<3},则M∩N={0,1,2},故选A.
8.(2016·山东省实验中学月考)若集合A={x|x2-2x-16≤0},B={y|C5y≤5},则A∩B中元素个数为( )
A.1个 B.2个
C.3个 D.4个
答案 D
解析 A=[1-17,1+,B={0,1,4,5},∴A∩B中有4个元素.故选D.
9.若集合M={0,1,2},N={(x,y)|x-2y+1≥0且x-2y-1≤0,x,y∈M},则N中元素的个数为( )
A.9 B.6
C.4 D.2
答案 C
解析 N={(x,y)|-1≤x-2y≤1,x,y∈M},则N中元素有:(0,0),(1,0),(1,1),(2,
1).
10.(2016·高考调研原创题)已知集合A={1,3,zi}(其中i为虚数单位),B={4},A∪B=A,则复数z的共轭复数为( )
A.-2i B.2i
C.-4i D.4i
答案 D
4解析 由A∪B=A,可知B⊆A,所以zi=4,则z==-4i,所以z的共轭复数为4i,故i
选D.
11.(2016·衡水调研卷)设集合M={y|y=2sinx,x∈[-5,5]},N={x|y=log2(x-1)},则M∩N=( )
A.{x|1<x≤5} B.{x|-1<x≤0}
C.{x|-2≤x≤0} D.{x|1<x≤2}
答案 D
解析 ∵M={y|y=2sinx,x∈[-5,5]}={y|-2≤y≤2},
N={x|y=log2(x-1)}={x|x>1},∴M∩N={y|-2≤y≤2}∩{x|x>1}={x|1<x≤2}.
12.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为(
)
A.[-1,0] B.(-1,0)
C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)
答案 D
解析 因为A={x|y=f(x)}={x|1-x2>0}={x|-1<x<1},则u=1-x2∈(0,1], 所以B={y|y=f(x)}={y|y≤0}.
所以A∪B=(-∞,1),A∩B=(-1,0].
故图中阴影部分表示的集合为(-∞,-1]∪(0,1),故选D.
13.(2016·沧州七校联考)已知集合A={-1,0},B={0,1},则集合∁A∪B(A∩B)=( )
A.∅ B.{0}
C.{-1,1} D.{-1,0,1}
答案 C
解析 ∵A∩B={0},A∪B={-1,0,1},
∴∁A∪B(A∩B)={-1,1}.
14.(2016·天津南开区一模)已知P={x|4x-x2≥0},则集合P∩N中的元素个数是( )
A.3 B.4
C.5 D.6
答案 C
解析 因为P={x|4x-x2≥0}={x|0≤x≤4},且N是自然数集,所以集合P∩N中元素的个数是5,故选C.
15.(2016·浙江温州二模)集合A={0,|x|},B={1,0,-1},若A⊆B,则A∩B=________,A∪B=________,∁BA=________.
答案 {0,1} {1,0,-1} {-1}
解析 因为A⊆B,所以|x|∈B,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A={0,1},则A∩B={0,1},A∪B={1,0,-1},∁BA={-1}.
16.设全集U=A∪B={x∈N*|lgx<1},若A∩(∁UB)={m|m=2n+1,n=0,1,2,3,4},则集合B=________.
答案 {2,4,6,8}
解析 U={1,2,3,4,5,6,7,8,9},A∩(∁UB)={1,3,5,7,9},∴B={2,4,6,8}.
17.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.
(1)9∈A∩B; (2){9}=A∩B.
答案 (1)a=5或a=-3 (2)a=-3
解析 (1)∵9∈A∩B且9∈B,∴9∈A.
∴2a-1=9或a2=9.∴a=5或a=±3.
而当a=3时,a-5=1-a=-2,故舍去.
∴a=5或a=-3.
(2)∵{9}=A∩B,∴9∈A∩B.
∴a=5或a=-3.
而当a=5时,A={-4,9,25},B={0,-4,9},
此时A∩B={-4,9}≠{9},故a=5舍去.
∴a=-3.
讲评 9∈A∩B与{9}=A∩B意义不同,9∈A∩B说明9是A与B的一个公共元素,但A与B允许有其他公共元素.而{9}=A∩B说明A与B的公共元素有且只有一个9.
18.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁UA)∩B=∅,试求实数m的值.
答案 m=1或m=2
解析 易知A={-2,-1}.
由(∁UA)∩B=∅,得B⊆A.
∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.
∴B={-1}或B={-2}或B={-1,-2}.
①若B={-1},则m=1;
②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};
③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.
经检验知m=1和m=2符合条件.
∴m=1或2.
1.如下图所示,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是(
)
A.(A∩B)∩C
C.(A∩B)∩∁IC
答案 B B.(A∩∁IB)∩C D.∁I(B∩A)∩C
解析 在集合B外等价于在∁IB内,因此阴影是A,∁IB和C的公共部分.
2.满足条件{0,1}∪A={0,1}的所有集合A的个数是( )
A.1 B.2
C.3 D.4
答案 D
解析 ∵{0,1}∪A={0,1},∴A⊆{0,1},故满足条件的集合A的个数为22.
3.(2016·皖南八校联考)已知集合P={x|x2-4<0},Q={x|x=2k+1,k∈Z},则P∩Q=( )
A.{-1,1} B.[-1,1]
C.{-1,-3,1,3} D.{-3,3}
答案 A
4.已知集合A={1,3,m},B={1,m},A∪B=A,则m=( )
A.0或3 B.0或3
C.13 D.1或3
答案 B
解析 ∵A={1,3m},B={1,m},A∪B=A,
∴m=3或m=m.
∴m=3或m=0或m=1.
当m=1时,与集合中元素的互异性不符,故选B.
5.(2014·四川文)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=( )
A.{-1,0} B.{0,1}
C.{-2,-1,0,1} D.{-1,0,1,2}
答案 D
解析 由二次函数y=(x+1)(x-2)的图像可以得到不等式(x+1)(x-2)≤0的解集A=[-1,2],属于A的整数只有-1,0,1,2,所以A∩B={-1,0,1,2},故选D.
6.已知i为虚数单位,集合P={-1,1},Q={i,i2},若P∩Q={zi},则复数z等于( )
A.1 B.-1
C.i D.-i
答案 C
解析 因为Q={i,i2},所以Q={i,-1}.又P={-1,1},所以P∩Q={-1},所以zi=-1,所以z=i,故选C.
7.(2015·天津)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩(∁UB)=( )
A.{3} B.{2,5}
C.{1,4,6} D.{2,3,5}
答案 B
解析 由题意可得∁UB={2,5},∴A∩∁UB={2,5}.故选B.
8.(2016·广州综合检测)已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合{1,2}可以表示为( )
A.M∩N B.(∁UM)∩N
C.M∩(∁UN) D.(∁UM)∩(∁UN)
答案 B
解析 由题意得M∩N={5},(∁UM)∩N={1,2},M∩(∁UN)={3,4},(∁UM)∩(∁UN)=∅,故选B.
19.(2013·湖北)已知全集为R,集合A={x|(x≤1},B={x|x2-6x+8≤0},则A∩(∁R B)2
=
( )
A.{x|x≤0} B.{x|2≤x≤4}
C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}
答案 C
解析 由题意可知,集合A={x|x≥0},B={x|2≤x≤4},所以∁R B={x|x<2或x>4},此时
A∩(∁R B)={x|0≤x<2或x>4},故选C.
a10.已知集合M={2,4,6,8},N={1,2},P={x|x=a∈M,b∈N},则集合P的真b
子集的个数是( )
A.4 B.6
C.15 D.63
答案 D
解析 由已知得P={2,1,4,6,3,8},故集合P的真子集的个数为26-1=63.故选D.
11.(2016·浙江嘉兴一中调研)设集合A={3,x2},B={x,y},若A∩B={2},则y的值为
( )
A.1 B.2
C.4 D.3
答案 B
解析 由A∩B={2},得x2=2,∴x=2,故y=2.故选B.
12.(2016·安徽合肥八中段考)集合A={x|x2+x-6≤0},B={y|y=lnx,1≤x≤e2},则集合A∩(∁R B)=( )
A.[-3,2] B.[-2,0)∪(0,3]
C.[-3,0] D.[-3,0)
答案 D
解析 化简A={x|-3≤x≤2},B={y|y=lnx,1≤x≤e2}={y|0≤y≤2},从而∁R B={x|x<0或x>2},因此A∩(∁R B)={x|-3≤x<0}.故选D.
13.已知集合M={1,a2},P={-1,-a},若M∪P有三个元素,则M
推荐内容