七上数学课堂作业本答案
来源:管理学 发布时间:2015-10-31 点击:
七上数学课堂作业本答案篇一
人教版七年级(上)教科书数学课堂作业
学校
七 年 级 班
姓名:学号:
数 学 课 堂 作 业 本
1
2
3
4
5
七上数学课堂作业本答案篇二
2013浙教版数学作业本七年级上册答案{七上数学课堂作业本答案}.
七上数学课堂作业本答案篇三
七下数学课堂作业本
七下数学课堂作业本
1过两点有且只有一条直线(强调唯一性和存在性)
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
尺规作图(这是重难点)
作线段等于已知线段和作角等于已知角
(1)理解尺规作图的含义
①只用没有刻度的直尺和圆规作图称为尺规作图.
显然,尺规作图的工具只能是直尺和圆规.其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆弧等.值得注意的是直尺是没有刻度的或不考虑刻度的存在.
②基本作图:a. 用尺规作一条线段等于已知线段;b. 用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.
(2)熟练掌握尺规作图题的规范语言
Ⅰ. 用直尺作图的几何语言:
①过点×、点×作直线××;或作直线××;或作射线××;
②连结两点××;或连结××;
③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×; Ⅱ. 用圆规作图的几何语言:
①在××上截取××=××;
②以点×为圆心,××的长为半径作圆(或弧);
③以点×为圆心,××的长为半径作弧,交××于点×;
④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.
(3)尺规作图题的步骤:
①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件; ②求作:能根据题目写出要求作出的图形及此图形应满足的条件;
③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法. 在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°(掌握证明此定理的两种方法)
附加:画三角形的高时,只需向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边上的高. (易错点)
注意:(1)三角形的高是线段,垂线段.
(2)锐角三角形的高都在三角形内部;直角三角形仅斜边上的高在三角形内部,另两边上的高为三角形的两条直角边;钝角三角形仅一条高在三角形内部,另两条高在三角形外部.
(3)三角形三条高所在直线交于一点.且这点叫做三角形的垂心。
三角形的三条中线交于三角形内部, 这一点叫做三角形的重心。
三角形三条角平分线交于三角形内部,这一点叫做三角形的内心。
四边形内容部分
18定理 四边形的内角和等于360°
19四边形的外角和等于360°
20多边形内角和定理 n边形的内角的和等于(n-2)×180°
21推论 任意多边的外角和等于360°
22多边形对角线公式n (n-3)/2
七上数学课堂作业本答案篇四
初一下册数学课堂作业本答案
一、温故知新。
1、在一个棱长为7厘米的正方体木块的每个面的中心上打一个直穿木块的洞,洞口是边长为1厘米的正方形,挖通后木块的体积和表面积.。
2、商店购进一批衣服,进价是每件55元,售价是每件85元,当卖到只剩下10件时,已获利2150元。这批衣服有多少件?
3、一个长方体铁块,横截面是周长20分米的正方形,长是8分米,它体积是多少立方分米?如果每立方分米铁重7.8千克,这块铁重多少千克?{七上数学课堂作业本答案}.
4、一个长方体木块,长12分米,宽8分米,高9分米..将它锯成体积是8立方分米的正方体小木块,最多可锯多少块?
5、一列快车从甲站开往乙站,每小时行50千米,一列客车同时从乙站开往甲站,每小时60千米,两列车在距离两站中点18千米处相遇.甲、乙两站相距多少千米?
二、随堂精练。
1、甲、乙两数的和是36.3。如果甲数的小数点向右移动一位就与乙数相等,甲、乙两数各是多少?
2、甲、乙两数的差是18.9。如果甲数的小数点向左移动一位就与乙数相等,甲、乙两数各是多少?
3、在横截面积是0.25平方米的长方体下水管里,水流的速度是每秒2米,这个下水管1.5分钟能排水多少立方米?
三、能力测评。
1、用长20厘米、宽15厘米、高6厘米的长方体木块,堆成一个正方体,至少需要( )块这样的木块
2、一个长方体,如果长增加2厘米,宽和高不变;或者宽增加3厘米,长和高不变;或者高增加4厘米,长和宽不变,体积都比原来增加48平方厘米。这个长方体和表面积是多少?
3、右图是一个台阶横截面图,台阶宽4米,如果在台阶上
铺设红地毯,每平方米花40元,一共要花多少元?{七上数学课堂作业本答案}.
四、拓展延伸。
1、一个长方体容器,里面盛有一些水,把一个底面边长是2厘米的正方形长方体钢条垂直插入水中(没有浸没)。当把这个方钢向上提起3厘米是水面下降了4厘米。求这个长方体容器的底面积。
2、在一个长是50厘米,宽是40厘米,高是60米,水深35厘米的长方体水槽中插入一个底面是边长10厘米正方形,长是45厘米的长方体铁块。现将铁块向上提20厘米,问现在水面上被水浸湿的铁长度是多少厘米?
七上数学课堂作业本答案篇五
七年级上册数学课时作业
新人教版七年级数学(上)知识点归纳
第一章 有理数
1、正数(position number):大于0的数叫做正数。
2、负数(negation number):在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形 式,这样的数称为有理数。
5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。
6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。 由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。 加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。 表达式:(a+b)+c=a+(b+c)
9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
11、倒数:1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。a中,a叫做底数(base number),n叫做指数(exponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的n
任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序
(1)“先乘方,再乘除,最后加减”的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a﹡10的形式(其中a是整数数位只有一位的数(即0<a<10),n是正整数)。
第二章 整式的加减
1、单项式:几个数字或字母的乘积叫做单项式.单独一个数或一个字母也是单项式.
2、系数:单项式中的数字因数叫做这个单项式的系数.
3、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4、多项式:几个单项式的和叫做多项式.
5、多项式的项:在多项式中,每个单项式叫做多项式的项.
6、常数项:多项式中,不含字母的项叫做常数项.
7、多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数.
8、升(降)幂排列:把一个多项式,按某一个字母的指数从大到小(或从小到大)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列.
9、整式:单项式和多项式统称整式。
10、同类项:所含字母相同,并且相同字母的次数也相同的项,叫做同类项.
11、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
12、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号; 括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
13、整式的加减:整式加减的一般步骤:
1.如果遇到括号,按去括号法则先去括号; 2.合并同类项.
第三章 一元一次方程
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. n
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表
示为:如果a=b,那么a±c=b±c
(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用
ab式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么= cc
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1、 去分母(方程两边同乘各分母的最小公倍数)
2、去括号(按去括号法则和分配律)
3、 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4、合并(把方程化成ax = b (a≠0)形式)
b5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解 a
六、用方程思想解决实际问题的一般步骤
1、 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2、设:设未知数(可分直接设法,间接设法)
3、找:找出题目中的等量关系
4、 列:根据等量关系列方程.
5、 解:解出所列方程.
6、 检:检验所求的解是否符合题意.{七上数学课堂作业本答案}.
7、 答:写出答案(有单位要注明答案)
七、有关常用应用类型题及各量之间的关系
1、 和、差、倍、分问题:
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增
长率„„”来体现.
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余„„”来体现.
2、 等积变形问题:
“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
3、劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4、 数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为(其中a、cb、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.
5、工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间{七上数学课堂作业本答案}.
6、行程问题:
(1)行程问题中的三个基本量及其关系: 路程=速度×时间.
(2)基本类型有:① 相遇问题;
② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题.
7、商品销售问题
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价 商品售价=商品标价×折扣率
8、储蓄问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵ 利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)
第四章 图形认识初步
一、多姿多彩的图形
1、从实物中抽象出的各种图形统称为几何图形。
点、线、面、体:(1)点动成线,线动成面,面动成体
(2)体体相交成面,面面相交成线,线线相交成点
二、直线、射线、线段
1、两点确定一条直线
2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,
这个公共点叫做它们的交点。
3、两点之间,线段最短。
4、连接两点间的线段的长度,叫做这两点的距离。
三、角
1、有且只有一个角
2、把一个周角360等分,每一份就是一度的角,记做1°﹔把1度的角60等分,每一份叫 做1分的角,记作1′﹔把1分的角60等分,每一份叫做1秒的角,记作1″。
3.、角的运算:1周角=360°,1平角=180°,1°=60′,1′=60″ 4、角的平分线:A. 从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 B.角平分线上的一点到角的两边距离相等。
四、线段、射线和直线的联系与区别
联系:线段、射线、直线是部分与整体的关系.线段向一方无限延长形成了射线,向两个方向无限延长得到了直线.直线上的两点和它们之间的部分组成线段,直线上的一点及其一旁的部分是射线,射线反向延长得直线.区别:
七上数学课堂作业本答案篇六
人教版六年级上册数学课堂作业本答案.doc
1 (竖着来)10,三分之八,五分之六,二分之九(第二列)12,12,12,12
2 4:3,2:5,4:9,3:6:5
3 (不用过程了吧,也是竖着来)八分之一,二有六分之一,八分之五,九分之二十八,七分之六,六十分之七
推荐内容