七下数学导学新作业答案

来源:快速阅读法 发布时间:2014-04-30 点击:

七下数学导学新作业答案篇一

七下数学导学答案四

2.3解二元一次方程组(1) 我预学

1.86y,4x 2.(1)代入消元法 (2)转化化归的数学思想 (3)只要有自已的36

3x7想法,哪一步均可以 3.(1)y2(3y5)3 (2) (3)3-2x 3x-2(3-2x)=8 2 3y7

x231y=-1  y 22y131322x2 根据未知数前y2y8 -1 x=2 y1

面的系数,尽可能选择简单的变形方式

我梳理

用代入法解二元一次方程组的一般步骤可参考教科书中的内容.

我达标

1.D 2.(1)2x (2x (33

42x6 3.②,xy2,①,3(2y)2y1 3

x1x3x24.(1) (2) (3) 知识形成:先消哪个未知数,选择合y2y1y2

适的方程变形,括号

我挑战

2m5n15m20x41.  2.提示:把解分别代入方程得,解得 y2mn15n5

我攀登

重组方程组x2mx2ny43x4y10,得解为,再把解代入新的方程组 ,xy1y1nx(m1)y3

可得m6 n4

2.3解二元一次方程组(2) 我预学

1.(1)加减消元 (2)①+②即可 (3)例3可以直接加减消元,例4需要变形后加减

消元 (4)当同一个未知数的系数的绝对值相同,或是通过方程变形也可以使系数的绝对

值相同时,可考虑用加减消元法来解 2.都是通过“消元”把二元一次方程组转化为一元

一次方程求解,均体现了转化化归的数学思想,不同的是前者用代入消元的方式,后者用加

减消元的方式.

9x53.(1)4x3 3x2(4x3)3 (2)相减 5x9 (3)解为

y21

5

我梳理

用加减法解二元一次方程组的一般步骤可参考教科书中的内容;同一未知数的系数相同或相反时,选加减消元法较易,有未知数的系数为±1时,选代入消元法较易.

我达标

x4a1m51.B 2. D 3. -2 4.(1) (2) (3) 知识形成:相b2n2y1

同或互为相反数

我挑战

1.提示:可先把方程组化简为5xy36x7,再解得;也可将xy和xy作为整x5y12y1

xy8x7体,加减法求得,再解得 xy6y1

2.由题意得4uv14u7,解得 6u2v14v14

3.提示:两方程相减可得2m-4n=4,所以 6m-12n=3(2m-4n)=12

我攀登

提示:把正确的解代入方程cx-7y=8,可得c=-2,把两个解分别代入 ax+by=2,得方程组

3a2b2a4,解为,所以 a+b+c=7 2a2b2b5

2.4二元一次方程组的应用(1) 我预学

1.检验方程组的解是否满足方程组本身,检验方程组的解是否满足满足题意或实际.

2.(1)能;合作学习:设男孩x人,由题意知女孩为(x-1)人,可得方程为x2(x11); 例1:设做横式纸盒x个,由题意知做竖式纸盒为(1000-2x)个,可得方程为3x4(10002x)2000

(2)有两个未知数,能,如设男孩为x人,女孩为y人,则方程组为x1y x2(y1)

(3)列一元一次方程组涉及到两个未知数之间的转化,列二元一次方程组更加直观,两种方法喜欢哪一种均可.

y2x1xy133.(1)9,6 (2)4(xy) (3)x, 2x, y, 4y,  2x4y36282

我梳理

列二元一次方程组解决实际问题的基本步骤可参考教科书中的内容;列表法;图示法.

我达标

xy501.A 2.1 3.有14人参加夏令营,预订了3个房间;知识形成:两个,两个,xy82

两个 4.树上7只,地上5只.

我挑战

5y3xx101.设长为xcm,宽为ycm,得,解为,所以长为10cm,宽为6cm; 2yx2y6

2.甲速为6千米/时,乙速为4千米/时.

我攀登

提示:对AB,AC,BC三种方案分别列方程组计算,AB方案无解,AC方案A型3 台,C型33台,BC方案B型7台,C型29台.

2.4二元一次方程组的应用(2) 我预学

1.所列方程组只要符合题意均可.

2.例如直接设未知数不太容易求解时,可考虑设间接未知数等等.

kb53.(1)3240,128 (2) -3,2 (3)不准确 2米锯8段,1米锯2段. 2kb4

我梳理

分析未知量 相等关系 设元

我达标

1.C 2.30 3.材料费20000元,工资5000元 4.工作服价值200元,工资40元/天

我挑战

1.(1)5,6,9,(2)二月份男装收入3.5万元,女装收入2.5万元;

2.(1)左图可得:

3 4 -1 34x322yx2yxyx,

2 –2 2 6

解得x1 ,(2) y2x5 0 1

我攀登

提示:由题意可知,获一等奖的人数至多2名.当获一等奖的人数是1名时,设获二等奖有x人,获三等奖有y人,则由题意得53x2y40x3,解得 所以总获奖人数为1+3+13=17(人);当获一等奖的人154xy40y13

数是2名时,解不合题意,综上,该公司本年度获得一、二、三等奖的职工共17人.

2.5 三元一次方程组及其解法 我预学

1.含有三个未知数,且含有未知数的项的次数都是一次的方程叫做三元一次方程,由三个一次方程组成,并且含有三个未知数的方程叫做三元一次方程组.能同时满足三元一次方程组中各个方程的解叫这个三元一次方程组的解.{七下数学导学新作业答案}.

2.(1)代入法和加减法 (2)基本思想是消元

x2x23.(1)3 (2) -5 (3)①y3 ②y1

11zz22

(4)甲班植树36棵,乙班植树18棵,丙班植树12棵.

第3章 整式的乘除

3.1同底数幂的乘法(1) 我预学

1.(1)相同因数的积 幂 底数 指数 a的n次方 a的n次幂 (2)3,(-2) ; () (3)

2的立方的相反数 2.(1)m,a,n,a;(m+n),a;amn,底数,相加 (2) (3)

87878727355,(3) 9(3) (2)(2)=2827;(ab)(ba)=(ba)(ba) 3.(1)311; (2){七下数学导学新作业答案}.

5(1)× 应为511(2))× 应为3a3 (3)√(4)× 应为(ba) (xy)7 4.

我梳理

不变,相加

我达标

1.D 2. D 3. (1) 2 (2) -6 4 (3) -27 (4)6 5 4. 8.57 ×1010 5. 3 6.(1)-312 (2)2 an+3 (3)–(x-y)10 (4)0

我挑战

1.9 2.m=3, n=1 3.m+p=2n

我攀登

1.3xm;小贴士:amnaman 2. (1)1 , 9 ,3 ,7 (2) 3 81

3.1同底数幂的乘法(2) 我预学

1.518,同底数幂相乘,底数不变,指数相加 2. 52 6 56 3.(1) am,同底数幂相乘,底数不变,指数相加,mn,amn,amn,幂的乘方,底数不变,指数相乘 (2)相同点:底数不变;不同点:一个是指数相加,一个是指数相乘 (3)相等,根据幂的乘方运算法则 (4)幂的乘方,底数不变,指数相乘;同底数幂的乘法,底数不变,指数相加

4.(1) C (2)A (3)①524 ②524

我梳理

底数,相加;底数,相乘;(a)与(a)的关系是相等;法则逆用:amn=(a)=(a) 我达标 mnnmmnnm

1.C 2.C 3.(1) (9) (3) (3) (3) (2)(1)(a) (a) (a) (a) 4.9(2)4,8 5. (1)3 10 (2)a 36 (3)-2x15 (4)a 12 (5).-a20

我挑战

1.(1)2或-2 (2) 729 (3)2 2. 16 3. (1)> < (2)4444>3555>5333 我攀登 4282284426623443

2013201420142013,提示:举几个特殊例子猜想得到nn1(n1)n.

七下数学导学新作业答案篇二

七年级数学下 作业本答案 2013

七年级数学下 作业本答案

2013.3

七下数学导学新作业答案篇三

七年级下册数学新课堂答案{七下数学导学新作业答案}.

1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

需要种的天数是2150÷86=25天

甲25天完成24×25=600棵

那么乙就要完成900-600=300棵之后,才去帮丙

即做了300÷30=10天之后 即第11天从A地转到B地。

2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。

把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份

所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份

因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份

所以45-30=15天,每亩面积长84-60=24份

所以,每亩面积每天长24÷15=1.6份

所以,每亩原有草量60-30×1.6=12份

第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份

新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛

所以,一共需要38.4+3.6=42头牛来吃。

两种解法:

解法一:

设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-

1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)

解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元

乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元

甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元

三人合作一天完成(5/12+4/15+7/20)÷2=31/60,

三人合作一天支付(750+400+560)÷2=855元

甲单独做每天完成31/60-4/15=1/4,支付855-400=455元

乙单独做每天完成31/60-7/20=1/6,支付855-560=295元

丙单独做每天完成31/60-5/12=1/10,支付855-750=105元

所以通过比较

选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元

4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的18÷3=6倍

上面部分和下面部分的高度之比是(50-20):20=3:2

所以上面部分的底面积是下面部分装水的底面积的6÷3×2=4倍

所以长方体的底面积和容器底面积之比是(4-1):4=3:4

独特解法:

(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),

所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,

所以体积比就等于底面积之比,9:12=3:4

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

把甲的套数看作5份,乙的套数就是6份。

甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份

甲比乙多4-3=1份,这1份就是10套。

所以,甲原来购进了10×5=50套。

6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速

度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池? 把一池水看作单位“1”。

由于经过7/3小时共注了一池水,所以甲管注了7/12,乙管注了5/12。

甲管的注水速度是7/12÷7/3=1/4,乙管的注水速度是1/4×5/7=5/28。

甲管后来的注水速度是1/4×(1+25%)=5/16

用去的时间是5/12÷5/16=4/3小时

乙管注满水池需要1÷5/28=5.6小时

还需要注水5.6-7/3-4/3=29/15小时

即1小时56分钟

继续再做一种方法:

按照原来的注水速度,甲管注满水池的时间是7/3÷7/12=4小时

乙管注满水池的时间是7/3÷5/12=5.6小时

时间相差5.6-4=1.6小时

后来甲管速度提高,时间就更少了,相差的时间就更多了。

甲速度提高后,还要7/3×5/7=5/3小时

缩短的时间相当于1-1÷(1+25%)=1/5

所以时间缩短了5/3×1/5=1/3

所以,乙管还要1.6+1/3=29/15小时

再做一种方法:

①求甲管余下的部分还要用的时间。

7/3×5/7÷(1+25%)=4/3小时

②求乙管余下部分还要用的时间。

7/3×7/5=49/15小时

③求甲管注满后,乙管还要的时间。

49/15-4/3=29/15小时

7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2

骑车和步行的时间比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分钟

所以,小明步行完全程需要7÷3/10=70/3分钟。

8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车. 乙车比甲车多行11-7+4=8分钟。

说明乙车行完全程需要8÷(1-80%)=40分钟,甲车行完全程需要40×80%=32分钟 当乙车行到B地并停留完毕需要40÷2+7=27分钟。

甲车在乙车出发后32÷2+11=27分钟到达B地。

即在B地甲车追上乙车。

{七下数学导学新作业答案}.

9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

甲车和乙车的速度比是15:10=3:2

相遇时甲车和乙车的路程比也是3:2

所以,两城相距12÷(3-2)×(3+2)=60千米

10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱? 我的解法如下:(共12辆车)

本题的关键是集装箱不能像其他东西那样,把它给拆散来装。因此要考虑分配的问题。

七下数学导学新作业答案篇四

新人教版七年级数学下册导学案

课题:5.1.1 相交线

【学习目标】

1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。 2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。 3.通过辨别对顶角与邻补角,培养识图的能力。

【学习重点】邻补角和对顶角的概念及对顶角相等的性质。 【自主学习】

1.阅读课本P1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯? ,

2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方

向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .

3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角

的问题, 阅读课本P2内容,探讨两条相交线所成的角有哪些?各有什么特征? 【合作探究】

1.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的

_ B位置关系如何?根据不同的位置怎么将它们分类? _ C

_ A

_ D

例如:

(1)∠AOC和∠BOC有一条公共边.....OC,它们的另一边互为 ,称这两个角互为 。用量角器量一量这两个角的度数,会发现它们的数量关系是 (2)∠AOC和∠BOD (有或没有)公共边,但∠AOC的两边分别是∠BOD两边的 ,称这两个角互为 。用量角器量一量这两个角的度数,会发现它们的数量关系是 。

3.用语言概括邻补角、对顶角概念.

的两个角叫邻补角。 的两个角叫对顶角。 4.探究对顶角性质.

在图1中,∠AOC的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等. .....

注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角

性质是确定为对顶角的两角的数量关系.

你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗? 【巩固运用】

1.例题:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

24

a

b

提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.

2.练习:完成课本P3练习. 【整理学案】

本节课你学到了什么?有什么收获和体会?还有什么困惑? 【达标测评】

1.如图所示,∠1和∠2是对顶角的图形有( )

A.1个 B.2个 C.3个 D.4个

2.如图(1),三条直线AB,CD,EF相交于一点O, ∠AOD的对顶角是_____,∠AOC的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

EAC

FDB

3.如图,直线AB,CD相交于O,OE平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB的度数.

AEC

DB

4.如图,直线a,b,c两两相交,∠1=2∠3,∠2=68°,求∠4的度数

b

1

a

5.若4条不同的直线相交于一点,图中共有几对对顶角?若n条不同的直线相交于一点呢?

课题:5.1.2 垂线(1)

【学习目标】

1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。 2.掌握点到直线的距离的概念,并会度量点到直线的距离。 3.掌握垂线的性质,并会利用所学知识进行简单的推理。 【学习重点】垂线的定义及性质。

【学具准备】相交线模型,三角尺,量角器 【自主学习】

1.如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______

2.改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2、∠3、∠4的大小。 【合作探究】

1.阅读课本P3的内容,回答上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。 2.用语言概括垂直定义

两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。 3.垂直的表示方法:

垂直用符号“⊥”来表示,若“直线AB垂直于直线CD, 垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如下图。 4.垂直的推理应用:

(1)∵∠AOD=90° ( )

A

C

∴AB⊥CD ( ) (2)∵ AB⊥CD ( )

∴ ∠AOD=90°( ) 5.垂直的生活应用

观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象?找一找:在你身边,还能发现哪些“垂直”的实例?

【画图实践】

1.用三角尺或量角器画已知直线L的垂线.

(1)已知直线L,画出直线L的垂线,能画几条? L的垂线有_________条,即存在,但位置有不______性。

(2)怎样才能确定直线L的垂线位置呢?

在直线L上取一点A,过点A画L的垂线, 能画几条?再经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?

B .

L L

从中你能得出什么结论? ____________________________________________

2.变式训练,请完成课本P5练习第2题的画图。

画完图后,归纳总结:画一条射线或线段的垂线, 就是画它们所在______的垂线. 【整理学案】

本节课你你有那些收获?还有什么疑难需老师或同学帮助解决? 【达标测评】(有困难同学可以选做) (一)判断题.

1.两条直线互相垂直,则所有的邻补角都相等.( ) 2.一条直线不可能与两条相交直线都垂直.( )

3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( ) 4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ). (二)填空题.{七下数学导学新作业答案}.

1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.

2.如图2,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________. 3.如图3,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.

B

O

C(1)

D

C

(2)

DB

AC

O(3)

DB

4.已知钝角∠AOB,点D在射线OB上.

(1)画直线DE⊥OB (2)画直线DF⊥OA,垂足为F.

5.已知:如图,直线AB,射线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD 与OE的位置关系.

A

O

B

E

C

D

课题:5.1.2 垂线(2)

【学习目标】

1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念, 培养学生用几何语言准确表达的能力。

2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离。 【自主学习】

1.上学期我们学习过“什么什么最短”的几何知识,还记得吗? 。 2.思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短?

3.自学课本P5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑? 【合作探究】 1.问题转化

如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点。那么最短渠道问题会变成是怎样的数学问题? (提示:用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?) 2.学具感受

自制学具:在硬纸板上固定木条L,L外有一点P,另一根可以转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条

_ A

七下数学导学新作业答案篇五

2016年最新人教版七年级数学下册全册导学案

课题:5.1.1 相交线

【学习目标】

1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。 2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。 3.通过辨别对顶角与邻补角,培养识图的能力。

【学习重点】邻补角和对顶角的概念及对顶角相等的性质。 【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。 【自主学习】

1.阅读课本P1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯? ,

2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个

把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .

3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角{七下数学导学新作业答案}.

的问题, 阅读课本P2内容,探讨两条相交线所成的角有哪些?各有什么特征? 【合作探究】

1.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位

_ B置关系如何?根据不同的位置怎么将它们分类? _ C 例如:

_ A

_ D

(1)∠AOC和∠BOC有一条公共边.....OC,它们的另一边互为 ,称这两个角互

为 。用量角器量一量这两个角的度数,会发现它们的数量关系是 (2)∠AOC和∠BOD (有或没有)公共边,但∠AOC的两边分别是∠BOD两边的 ,称这两个角互为 。用量角器量一量这两个角的度数,会发现它们的数量关系是 。

3.用语言概括邻补角、对顶角概念.

的两个角叫邻补角。 的两个角叫对顶角。 4.探究对顶角性质.

在图1中,∠AOC的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等. .....

注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角

1

性质是确定为对顶角的两角的数量关系.

你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗? 【巩固运用】

1.例题:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

24

a

b

提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.

2.练习:完成课本P3练习. 【反思总结】

本节课你学到了什么?有什么收获和体会?还有什么困惑?(小组交流,互助解决) 【达标测评】

1.如图所示,∠1和∠2是对顶角的图形有( )

A.1个 B.2个 C.3个 D.4个

2.如图(1),三条直线AB,CD,EF相交于一点O, ∠AOD的对顶角是_____,∠AOC的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。

EAC

FDB

3.如图,直线AB,CD相交于O,OE平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB的度数.

AEC

DB

4.如图,直线a,b,c两两相交,∠1=2∠3,∠2=68°,求∠4的度数

b

c

2a

5.若4条不同的直线相交于一点,图中共有几对对顶角?若n条不同的直线相交于一点呢?

2

课题:5.1.2 垂线(1)

【学习目标】

1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。 2.掌握点到直线的距离的概念,并会度量点到直线的距离。 3.掌握垂线的性质,并会利用所学知识进行简单的推理。 【学习重点】垂线的定义及性质。 【学习难点】垂线的画法

【学具准备】相交线模型,三角尺,量角器 【自主学习】

1.如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______

2.改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2、∠3、∠4的大小。

【合作探究】

1.阅读课本P3的内容,回答上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。

2. 用语言概括垂直定义

两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。

3.垂直的表示方法:

垂直用符号“⊥”来表示,若“直线AB垂直于直线CD, 垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如下图。

4.垂直的推理应用:

(1)∵∠AOD=90° ( )

∴AB⊥CD ( ) (2)∵ AB⊥CD ( )

∴ ∠AOD=90°( ) 5.垂直的生活应用

观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象?找一找:在你身边,还能发现哪些“垂直”的实例?

【画图实践】

1.用三角尺或量角器画已知直线L的垂线.

(1)已知直线L,画出直线L的垂线,能画几条? 小组内交流,明确直线L的垂线有_________条,即存在,但位置有不______性。 (2)怎样才能确定直线L的垂线位置呢?

在直线L上取一点A,过点A画L的垂线, 能画几条?再经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?

B .

L

L

3

A

D

C

B

从中你能得出什么结论? ____________________________________________

2.变式训练,请完成课本P5练习第2题的画图。

画完图后,归纳总结:画一条射线或线段的垂线, 就是画它们所在______的垂线. 【反思总结】

本节课你你有那些收获?还有什么疑难需老师或同学帮助解决? 【达标测评】(有困难同学可以选做) (一)判断题.

1.两条直线互相垂直,则所有的邻补角都相等.( ) 2.一条直线不可能与两条相交直线都垂直.( )

3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( ) 4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ). (二)填空题.

1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.

2.如图2,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________. 3.如图3,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.

B

O

C(1)

D

C

(2)

DB

AC

O(3)

DB

(三)解答题.

1.已知钝角∠AOB,点D在射线OB上.

(1)画直线DE⊥OB (2)画直线DF⊥OA,垂足为F.

2.已知:如图,直线AB,射线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD 与OE的位置关系.

3.你能用折纸方法过一点作已知直线的垂线吗?

4

CEA

O

D

B

课题:5.1.2 垂线(2)

【学习目标】

1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念, 培养学生用几何语言准确表达的能力。

2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离。 【自主学习】

1.上学期我们学习过“什么什么最短”的几何知识,还记得吗? 。 2.思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短?

3.自学课本P5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑? 【合作探究】 1.问题转化

如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点。那么最短渠道问题会变成是怎样的数学问题? (提示:用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?) 2.学具感受

自制学具:在硬纸板上固定木条L,L外有一点P,另一根可以转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条a,会发现它们的交点A随之变化,线段PA 长度也随之变化.观察:当PA最短时,直线a与L的位置关系如何?用三角尺检验一下。 3.画图验证

(1)画直线L,在L外取一点P; (2)过P点出PO⊥L,垂足为O;

(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;

(4)用度量法比较线段PO、PA1、PA2、PA3……的大小,.得出线段 最小。 4.归纳结论.

连接直线外一点与直线上各点的所有线段中,简单说成: 5.知识类比

(1)垂线段与垂线有何区别联系? (2)垂线段与线段有何区别与联系?

6.解决问题:

此时你会解决课本P5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。 7.探究“点到直线的距离”?定义:

(1) 学习课本P6第二段内容回答什么叫“点到直线的距离”?默写一遍: 叫做点到直线的距离。 ........

5

_ a

_ A

七下数学导学新作业答案篇六

最新人教版七年级下册数学导学案

第五章 相交线与平行线

5.1.1 相交线 导学案

【学习目标】1、了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角。

2

、理解对顶角相等,并能运用它解决一些问题.

【学习重点】邻补角、对顶角的概念,对顶角性质与应用. 【学习难点】理解对顶角相等的性质. 【学习过程】 一、学前准备

各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报. 二、探索思考

探索一:完成课本P2页的探究,填在课本上. 你能归纳出“邻补角”的定义吗?

. “对顶角”的定义:

练习一:

1.如图1所示,直线AB和CD相交于点O,OE是一条射线. (1)写出∠AOC的邻补角:____ _ ___ __; (2)写出∠COE的邻补角: __;

图1 (3)写出∠BOC的邻补角:____ _ ___ __;

(4)写出∠BOD的对顶角:____ _.

2.如图所示,∠1与∠2是对顶角的是( )

上一篇:专利权转让合同范文
下一篇:一个人的图片说说大全

Copyright @ 2013 - 2018 学习网 All Rights Reserved

学习网 版权所有 京ICP备16605803号